Versatility of Cycloaddition of Electrophilic Alkynes to η²-CS₂ Metal Complexes. Reversible Isomerisation of 1,3-Dithiol-2ylideneiron and Heterometallocyclic Complexes

By HUBERT LE BOZEC, ALAIN GORGUES, and PIERRE DIXNEUF*

(Laboratoire de Chimie des Organométalliques, E.R.A. C.N.R.S. no. 477, Université de Rennes, 35042 Rennes Cedex,

France)

Summary The 1,3-dithiol-2-ylideneiron(0) complexes (3) isomerise to heterometallocycles (4), the equilibrium constant and rate constant increasing with donor strengths of the ligands on iron.

We have shown recently¹ that 1,3-dithiol-2-ylideneiron compounds may be formed directly by addition of a variety of activated alkynes to the η^2 -CS₂ iron complex (**1a**). This new type of addition is in contrast to that observed by Wakatsuki *et al.*² who isolated a heterometallocyclic derivative resulting from treatment of dimethyl acetylenedicarboxylate with an η^2 -CS₂ rhodium complex. We now provide evidence for isomerisation of 1,3-dithiol-2-ylideneiron complexes (**3**) to heterometallocycles (**4**) and we note that the relevant equilibrium constant and rate constant are strongly dependent on the electrondonating effect of the phosphorus ligands L¹ and L² (Scheme).

When a benzene solution of the η^2 -CS₂ iron derivatives $(1a-e)^3$ is treated at room temperature under an inert atmosphere with 1 equiv. of the alkyne (2), the carbene complexes (3a-e) are formed within a few seconds. The complexes (3) were characterised by their mass spectra, two C=O i.r. absorption bands at low frequencies, and only one CO₂Me ¹H n.m.r. signal [e.g., C₆D₆ solution of the brown, air-sensitive compound (3e) has ν (C=O) at 1890 and 1835 cm⁻¹, and a singlet at δ 3·45 (6H, CO₂Me)]. Whereas the compounds (3a) and (3b) are stable, (3e) is rapidly converted into the metallocyclic isomer (4e), and complexes (3c) and (3d) lead to an equilibrium mixture [(3c):(4c) 85:15 and (3d):(4d) 18:82, respectively]. Complexes (4c-e) were characterised by their mass

spectra, two C=O i.r. absorption bands at high frequencies, two CO₂Me n.m.r. signals, and, for (4d) and (4e), by ¹³C n.m.r. spectroscopy [*e.g.*, compound (4e), yellow solid, m.p. 180 °C; C₆D₆ solution shows ν (C=O) at 2030 and 1970 cm⁻¹, and two singlets at δ 3·46 and 3·78 (each 3H, CO₂Me); ¹³C n.m.r. δ 50·8 and 51·5 (MeO), 140·2 (t, ²J_{P-C} 5 Hz) and 159·0 (t, ³J_{P-C} 3 Hz) (¹³C=C), 176·4 and 176·5 (C=O), and 196·6 (t, ²J_{P-C} 15 Hz), 207·9 (t, ²J_{P-C} 19 Hz), and 212 p.p.m. (t, ²J_{P-C} 15 Hz) for two nonequivalent CO and one co-ordinated C=S].

TABLE

	a	b	с	d	е
L^1	P(OMe) ₃	PPh,	$P(OMe)_{3}$	PMe,Ph	PMe,
L^2	P(OMe) ₃	PPh_{s}	PMe ₃	PMe_2Ph	PMe ₃
(3):(4) ^a	100:0	100:Ŏ	85:15	$18 : \bar{8}2$	0:100
Rateb	—		Very slow	Slow	Fast

The ratio of the complexes (3):(4) (Table) shows that basic phosphorus ligands L destabilize the carbene complex; this is attributed to the strong donor character of the nucleophilic carbene ligand.^{4,5} By contrast, complexes of iron(II), such as (4), are stabilised by powerful donor ligands.

The isomerisation $(3e) \rightarrow (4e)$ was easily monitored by the CO₂Me ¹H n.m.r. signal; the rate increased with the concentration of the carbene complex (3e), thus ruling out a simple intramolecular rearrangement. Addition of (1d) to (3e) gave rise to (1e) and (3d) indicating the reversibility of the carbene complex formation. These facts suggest that the multistep transformation (3) \rightarrow (4) may proceed *via* the retrocycloaddition (3) \rightarrow (1), followed by the 1,3dipolar addition (1) \rightarrow (4) as shown in the Scheme with $k_1 > k_2$.

An accurate X-ray structure determination for $[Fe(CO)_2-(\eta^2-CS_2)(PMe_3)(PPh_3)]$ indicated that bondlengths were best described by the 1,3-dipolar canonical forms A and B,³ and accounts for the effect of electron-donating ligands L stabilising form B and increasing k_2 .

The present study shows that by selection of suitable ligands L, it is possible to inhibit or effect the isomerisation of a 1,3-dithiol-2-ylidenemetal complex to the isomeric heterometallocycle.

We are grateful to the French D.G.R.S.T. for the award of a studentship to H.L.B.

(Received, 6th March 1978; Com. 240.)

- ¹ H. Le Bozec, A. Gorgues, and P. Dixneuf, J. Amer. Chem. Soc., 1978, submitted for publication.
 ² Y. Wakatsuki, H. Yamazaki, and H. Iwasaki, J. Amer. Chem. Soc., 1973, 95, 5781.
 ³ H. Le Bozec, P. Dixneuf, N. H. Taylor, and A. J. Carty, J. Organometallic Chem., 1977, 135, C29; Inorg. Chem., submitted for publication.
 - ⁴ E. O. Fischer, C. G. Kreiter, H. J. Kollmeier, J. Müller, and R. D. Fischer, J. Organometallic Chem., 1971, 28, 237. ⁵ D. J. Cardin, B. Cetinkaya, M. J. Doyle, and M. F. Lappert, Chem. Soc. Rev., 1973, 99.